Computer Vision and Deep Learning Techniques for the Analysis of Drone-Acquired Forest Images, a Transfer Learning Study

Author:

Kentsch SarahORCID,Lopez Caceres Maximo LarryORCID,Serrano Daniel,Roure FerranORCID,Diez YagoORCID

Abstract

Unmanned Aerial Vehicles (UAV) are becoming an essential tool for evaluating the status and the changes in forest ecosystems. This is especially important in Japan due to the sheer magnitude and complexity of the forest area, made up mostly of natural mixed broadleaf deciduous forests. Additionally, Deep Learning (DL) is becoming more popular for forestry applications because it allows for the inclusion of expert human knowledge into the automatic image processing pipeline. In this paper we study and quantify issues related to the use of DL with our own UAV-acquired images in forestry applications such as: the effect of Transfer Learning (TL) and the Deep Learning architecture chosen or whether a simple patch-based framework may produce results in different practical problems. We use two different Deep Learning architectures (ResNet50 and UNet), two in-house datasets (winter and coastal forest) and focus on two separate problem formalizations (Multi-Label Patch or MLP classification and semantic segmentation). Our results show that Transfer Learning is necessary to obtain satisfactory outcome in the problem of MLP classification of deciduous vs evergreen trees in the winter orthomosaic dataset (with a 9.78% improvement from no transfer learning to transfer learning from a a general-purpose dataset). We also observe a further 2.7% improvement when Transfer Learning is performed from a dataset that is closer to our type of images. Finally, we demonstrate the applicability of the patch-based framework with the ResNet50 architecture in a different and complex example: Detection of the invasive broadleaf deciduous black locust (Robinia pseudoacacia) in an evergreen coniferous black pine (Pinus thunbergii) coastal forest typical of Japan. In this case we detect images containing the invasive species with a 75% of True Positives (TP) and 9% False Positives (FP) while the detection of native trees was 95% TP and 10% FP.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3