Statistical Learning of the Worst Regional Smog Extremes with Dynamic Conditional Modeling

Author:

Deng LuORCID,Yu MengxinORCID,Zhang ZhengjunORCID

Abstract

This paper is concerned with the statistical learning of the extreme smog (PM 2.5 ) dynamics of a vast region in China. Differently from classical extreme value modeling approaches, this paper develops a dynamic model of conditional, exponentiated Weibull distribution modeling and analysis of regional smog extremes, particularly for the worst scenarios observed in each day. To gain higher modeling efficiency, weather factors will be introduced in an enhanced model. The proposed model and the enhanced model are illustrated with temporal/spatial maxima of hourly PM 2.5 observations each day from smog monitoring stations located in the Beijing–Tianjin–Hebei geographical region between 2014 and 2019. The proposed model performs more precisely on fittings compared with other previous models dealing with maxima with autoregressive parameter dynamics, and provides relatively accurate prediction as well. The findings enhance the understanding of how severe extreme smog scenarios can be and provide useful information for the central/local government to conduct coordinated PM 2.5 control and treatment. For completeness, probabilistic properties of the proposed model were investigated. Statistical estimation based on the conditional maximum likelihood principle is established. To demonstrate the estimation and inference efficiency of studies, extensive simulations were also implemented.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3