Statistical Inference of Dynamic Conditional Generalized Pareto Distribution with Weather and Air Quality Factors

Author:

Huang Chunli,Zhao Xu,Cheng Weihu,Ji Qingqing,Duan Qiao,Han Yufei

Abstract

Air pollution is a major global problem, closely related to economic and social development and ecological environment construction. Air pollution data for most regions of China have a close correlation with time and seasons and are affected by multidimensional factors such as meteorology and air quality. In contrast with classical peaks-over-threshold modeling approaches, we use a deep learning technique and three new dynamic conditional generalized Pareto distribution (DCP) models with weather and air quality factors for fitting the time-dependence of the air pollutant concentration and make statistical inferences about their application in air quality analysis. Specifically, in the proposed three DCP models, a dynamic autoregressive exponential function mechanism is applied for the time-varying scale parameter and tail index of the conditional generalized Pareto distribution, and a sufficiently high threshold is chosen using two threshold selection procedures. The probabilistic properties of the DCP model and the statistical properties of the maximum likelihood estimation (MLE) are investigated, simulating and showing the stability and sensitivity of the MLE estimations. The three proposed models are applied to fit the PM2.5 time series in Beijing from 2015 to 2021. Real data are used to illustrate the advantages of the DCP, especially compared to the estimation volatility of GARCH and AIC or BIC criteria. The DCP model involving both the mixed weather and air quality factors performs better than the other two models with weather factors or air quality factors alone. Finally, a prediction model based on long short-term memory (LSTM) is used to predict PM2.5 concentration, achieving ideal results.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3