Drop-Size Distribution Variations Associated with Different Storm Types in Southeast Texas

Author:

Hopper Larry J.,Schumacher CourtneyORCID,Humes Karen,Funk Aaron

Abstract

Drop-size distributions (DSDs) provide important microphysical information about rainfall and are used in rainfall estimates from radar. This study utilizes a four-year DSD dataset of 163 rain events obtained using a Joss–Waldvogel impact disdrometer located in southeast Texas. A seasonal comparison of the DSD data shows that small (~1 mm diameter) drops occur more frequently in winter and fall, whereas summer and spring months see an increase in the relative frequency of medium and large (~>2 mm diameter) drops, with notable interannual variability in all seasons. Each rain event is classified by dynamic forcing and radar precipitation structure to more directly link environmental and storm organization properties to storm microphysics. Cold fronts and upper-level disturbances account for 80% of the rain events, whereas warm fronts, weakly forced situations, and tropical cyclones comprise the other 20%. Warm frontal storms and upper-level disturbances have smaller drops compared to the climatological DSD for southeast Texas, whereas the more dynamically vigorous cold fronts and weakly forced environments have larger drops. Tropical cyclones generally produce smaller drops than the climatology, but their DSD anomalies are sensitive to what part of the storm is sampled. Regardless of dynamic forcing, storms with precipitation structures that are mostly deep convective or stratiform rain formed from deep convection have larger drops, whereas stratiform rain formed from non-deep convection has smaller drops. Reflectivity-rain rate (Z-R) relationships that account for dynamic forcing and precipitation structures improve rainfall estimates compared to climatological Z-R relationships despite a wide spread in Z-R relationships by storm.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3