Regional Variability of Raindrop Size Distribution from a Network of Disdrometers over Complex Terrain in Southern China

Author:

Zhang Asi1,Chen Chao12,Wu Lin1

Affiliation:

1. Guangdong Meteorological Observatory, Guangzhou 510640, China

2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Abstract

Raindrop size distribution (DSD) over the complex terrain of Guangdong Province, southern China, was studied using six disdrometers operated by the Guangdong Meteorology Service during the period 1 March 2018 to 30 August 2022 (~5 years). To analyze the long-term DSD characteristics over complex topography in southern China, three stations on the windward side, Haifeng, Enping and Qingyuan, and three stations on the leeward side, Meixian, Luoding and Xuwen, were utilized. The median mass-weighted diameter (Dm) value was higher on the windward than on the leeward side, and the windward-side stations also showed greater Dm variability. With regard to the median generalized intercept (log10Nw) value, the log10Nw values decreased from coastal to mountainous areas. Although there were some differences in Dm, log10Nw and liquid water content (LWC) frequency between the six stations, there were still some similarities, with the Dm, log10Nw and LWC frequency all showing a single-peak curve. In addition, the diurnal variation of the mean log10Nw had a negative relationship with Dm diurnal variation although the inverse relationship was not particularly evident at the Haifeng site. The diurnal mean rainfall rate also peaked in the afternoon and exceeded the maximum at night which indicated that strong land heating in the daytime significantly influenced the local DSD variation. What is more, the number concentration of drops, N(D), showed an exponential shape which decreased monotonically for all rainfall rate types at the six observation sites, and an increase in diameter caused by increases in the rainfall rate was also noticeable. As the rainfall rate increased, the N(D) for sites on the windward side (i.e., Haifeng, Enping and Qingyuan) were higher than for the sites on the leeward side (i.e., Meixian, Luoding and Xuwen), and the difference between them also became distinct. The abovementioned DSD characteristic differences also showed appreciable variability in convective precipitation between stations on the leeward side (i.e., Meixian, Luoding and Xuwen) and those on the windward side (Haifeng and Enping, but not Qingyuan). This study enhances the precision of numerical weather forecast models in predicting precipitation and verifies the accuracy of measuring precipitation through remote sensing instruments, including weather radars located on the ground.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

The Open Grants of the State Key Laboratory of Severe Weather

Radar Application and Short-term Severe-weather Predictions and Warnings Technology Program

Science Technology Research Program of Guangdong Meteorological Service

Water Resource Science and Technology Innovation Program of Guangdong Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3