Computational Study of the Dissociation Reactions of Secondary Ozonide

Author:

Almatarneh Mansour H.ORCID,Alrebei Shefa’ F.,Altarawneh Mohammednoor,Zhao YumingORCID,Abu-Saleh Abd Al-AzizORCID

Abstract

This contribution presents a comprehensive computational study on the reactions of secondary ozonide (SOZ) with ammonia and water molecules. The mechanisms were studied in both a vacuum and the aqueous medium. All the molecular geometries were optimized using the B3LYP functional in conjunction with several basis sets. M06-2X, APFD, and ωB97XD functionals with the full basis set were also used. In addition, single-point energy calculations were performed with the G4MP2 and G3MP2 methods. Five different mechanistic pathways were studied for the reaction of SOZ with ammonia and water molecules. The most plausible mechanism for the reaction of SOZ with ammonia yields HC(O)OH, NH3, and HCHO as products, with ammonia herein acting as a mediator. This pathway is exothermic and exergonic, with an overall barrier height of only 157 kJ mol−1 using the G3MP2 method. All the reaction pathways between SOZ and water molecules are endothermic and endergonic reactions. The most likely reaction pathway for the reaction of SOZ with water involves a water dimer, in which the second water molecule acts as a mediator, with an overall barrier height of only 135 kJ mol−1 using the G3MP2 method. Solvent effects were found to incur a significant reduction in activation energies. When the second H2O molecule acts as a mediator in the reaction of SOZ with water, the barrier height of the rate-determining step state decreases significantly.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3