Computational mechanistic study of the unimolecular dissociation of ethyl hydroperoxide and its bimolecular reactions with atmospheric species

Author:

Almatarneh Mansour H.,Alnajajrah Asmaa,Altarawneh Mohammednoor,Zhao Yuming,Halim Mohammad A.

Abstract

AbstractA detailed computational study of the atmospheric reaction of the simplest Criegee intermediate CH2OO with methane has been performed using the density functional theory (DFT) method and high-level calculations. Solvation models were utilized to address the effect of water molecules on prominent reaction steps and their associated energies. The structures of all proposed mechanisms were optimized using B3LYP functional with several basis sets: 6-31G(d), 6-31G (2df,p), 6-311++G(3df,3pd) and at M06-2X/6-31G(d) and APFD/6-31G(d) levels of theory. Furthermore, all structures were optimized at the B3LYP/6-311++G(3df,3pd) level of theory. The intrinsic reaction coordinate (IRC) analysis was performed for characterizing the transition states on the potential energy surfaces. Fifteen different mechanistic pathways were studied for the reaction of Criegee intermediate with methane. Both thermodynamic functions (ΔH and ΔG), and activation parameters (activation energies Ea, enthalpies of activation ΔHǂ, and Gibbs energies of activation ΔGǂ) were calculated for all pathways investigated. The individual mechanisms for pathways A1, A2, B1, and B2, comprise two key steps: (i) the formation of ethyl hydroperoxide (EHP) accompanying with the hydrogen transfer from the alkanes to the terminal oxygen atom of CIs, and (ii) a following unimolecular dissociation of EHP. Pathways from C1 → H1 involve the bimolecular reaction of EHP with different atmospheric species. The photochemical reaction of methane with EHP (pathway E1) was found to be the most plausible reaction mechanism, exhibiting an overall activation energy of 7 kJ mol−1, which was estimated in vacuum at the B3LYP/6-311++G(3df,3pd) level of theory. All of the reactions were found to be strongly exothermic, expect the case of the sulfur dioxide-involved pathway that is predicted to be endothermic. The solvent effect plays an important role in the reaction of EHP with ammonia (pathway F1). Compared with the gas phase reaction, the overall activation energy for the solution phase reaction is decreased by 162 and 140 kJ mol−1 according to calculations done with the SMD and PCM solvation models, respectively.

Funder

Deanship of Academic Research at the University of Jordan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference53 articles.

1. Havran, V., Dudukovic, M. & Cynthia, S. Conversion of methane and carbon dioxide to higher value products. Ind. Eng. Chem. Res. 50, 7089–7100 (2011).

2. Strong, P., Xie, S. & Clarke, W. Methane as a resource: Can the methanotrophs add value. J. Am. Chem. Soc. 49, 4001–4018 (2015).

3. Steele, L. et al. Scientific Application of Baseline Observations of Atmospheric Composition 417–463 (D. Reidel Publishing Company, Boston, 1987).

4. Wuebbles, D. & Hayhoe, K. Atmospheric methane and global change. Earth-Sci. Rev. 57, 3–4 (2002).

5. Isaksen, I., Berntsen, T. & Dalsøren, S. Atmospheric ozone and methane in a changing climate. J. Atmos. 5, 518–535 (2014).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3