The Contribution Rate of Driving Factors and Their Interactions to Temperature in the Yangtze River Delta Region

Author:

Zhou ChengORCID,Zhu NinaORCID,Xu JianhuaORCID,Yang DongyangORCID

Abstract

Complex temperature processes are the coupling results of natural and human processes, but few studies focused on the interactive effects between natural and human systems. Based on the dataset for temperature during the period of 1980–2012, we analyzed the complexity of temperature by using the Correlation Dimension (CD) method. Then, we used the Geogdetector method to examine the effects of factors and their interactions on the temperature process in the Yangtze River Delta (YRD). The main conclusions are as follows: (1) the temperature rose 1.53 °C; and, among the dense areas of population and urban, the temperature rose the fastest. (2) The temperature process was more complicated in the sparse areas of population and urban than in the dense areas of population and urban. (3) The complexity of temperature dynamics increased along with the increase of temporal scale. To describe the temperature dynamic, at least two independent variables were needed at a daily scale, but at least three independent variables were needed at seasonal and annual scales. (4) Each driving factor did not work alone, but interacted with each other and had an enhanced effect on temperature. In addition, the interaction between economic activity and urban density had the largest influence on temperature.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3