Abstract
In this study, we used an intensive observation dataset of a mobile observation vehicle (MOVE) to investigate the characteristics of thermal environments and diurnal variations of road surface temperature (RST) and air temperature, particularly at the urban street level, during the 2019 Building Block 3-dimensional urban Meteorological Experiment (BBMEX) campaign in Seoul. For the purpose of comparing characteristics of RST and air temperature with different surrounding thermal environments, we divided the road into four sections (S1: Open Section, S2: High-Rise Buildings, S3: Low-Rise Buildings, S4: Street Trees). This study demonstrates that the greater sky view factors (SVFs) are generally coincident with the greater RSTs, with a significance at the 5% level. The diurnal variations indicated that the time lag between observed maximum air temperature and RST has about one hour, which is attributable to an increase air temperatures above artificial pavement through heat convection with some latency. The diurnal temperature ranges (DTRs) of RST in S2 and S4 were relatively smaller than those of S1 and S3, with differences ranging from 2.9 °C to 4.5 °C. The current results will assist planners and decision makers in determining policy priorities with regard to urban street design and planning.
Funder
Korea Meteorological Administration
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献