Retrieval of Road Surface (Bridge Deck) Temperature near 0 °C Based on Random Forest Model

Author:

Wang Chuanhui,Jia Beixi,Zhou Jianping,Feng Lei,Chen Jian

Abstract

Based on the road surface (bridge deck) temperature, relative humidity, air temperature, wind speed and precipitation observed at two road surface meteorological stations and two bridge deck meteorological stations, as well as subsurface temperature at different depths observed at Hefei meteorological station, the independent variables are selected to establish the relationship between these factors and road surface temperature, using random forest and stepwise regression. The performance of these two methods was compared, and the importance of each factor was analyzed. Results show that the road surface (bridge deck) temperature linearly correlates with air temperature. In the case of low air temperature conditions (air temperature ≤ 8 °C), the road surface temperature is mainly higher than air temperature observed at the same station, and the bridge deck temperature is mainly lower than air temperature. In the retrieving of road surface temperature and bridge deck temperature, the random forest algorithm has lower mean absolute error (MAE) and root mean square error (RMSE) than the stepwise regression algorithm, especially in the retrieving of road surface temperature. MAE of road surface temperature retrieved by random forest on two bridge deck stations is reduced by 0.19 °C and 0.26 °C compared with the stepwise regression, and RMSE is reduced by 0.33 °C and 0.49 °C, respectively. The bias in the retrievals can be originated from the model itself and the error in the observations. Among the factors in the random forest model, air temperature is the most important. Meanwhile, there are differences in the importance of each factor in the retrieval of road surface temperature and bridge deck temperature. The subsurface temperature is more important in retrieving road surface temperature, while humidity and wind speed are generally more important to bridge deck temperature. It should be noted that due to the limitation of the observations, this study did not consider the net radiative flux, and the influence of net radiative flux on bridge deck and road surface temperature may be different.

Funder

FengYun Application Pioneering Project

National Key Research and Development program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3