What Can We Learn from Comparing Glacio-Hydrological Models?

Author:

Stoll ElenaORCID,Hanzer FlorianORCID,Oesterle FelixORCID,Nemec JohannaORCID,Schöber JohannesORCID,Huttenlau Matthias,Förster KristianORCID

Abstract

Glacio-hydrological models combine both glacier and catchment hydrology modeling and are used to assess the hydrological response of high-mountain glacierized catchments to climate change. To capture the uncertainties from these model combinations, it is essential to compare the outcomes of several model entities forced with the same climate projections. For the first time, we compare the results of two completely independent glacio-hydrological models: (i) HQsim-GEM and (ii) AMUNDSEN. In contrast to prevailing studies, we use distinct glacier models and glacier initialization times. At first glance, the results achieved for future glacier states and hydrological characteristics in the Rofenache catchment in Ötztal Alps (Austria) appear to be similar and consistent, but a closer look reveals clear differences. What can be learned from this study is that low-complexity models can achieve higher accuracy in the calibration period. This is advantageous especially when data availability is weak, and priority is given to efficient computation time. Furthermore, the time and method of glacier initialization play an important role due to different data requirements. In essence, it is not possible to make conclusions about the model performance outside of the calibration period or more specifically in the future. Hence, similar to climate modeling, we suggest considering different modeling approaches when assessing future catchment discharge or glacier evolution. Especially when transferring the results to stakeholders, it is vital to transparently communicate the bandwidth of future states that come with all model results.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3