Projecting sediment export from two highly glacierized alpine catchments under climate change: exploring non-parametric regression as an analysis tool

Author:

Schmidt Lena KatharinaORCID,Francke Till,Grosse Peter Martin,Bronstert AxelORCID

Abstract

Abstract. Future changes in suspended sediment export from deglaciating high-alpine catchments affect downstream hydropower reservoirs, flood hazard, ecosystems and water quality. Yet, quantitative projections of future sediment export have so far been hindered by the lack of process-based models that can take into account all relevant processes within the complex systems determining sediment dynamics at the catchment scale. As a promising alternative, machine-learning (ML) approaches have recently been successfully applied to modeling suspended sediment yields (SSYs). This study is the first, to our knowledge, exploring a machine-learning approach to derive sediment export projections until the year 2100. We employ quantile regression forest (QRF), which proved to be a powerful method to model past SSYs in previous studies, for two nested glaciated high-alpine catchments in the Ötztal, Austria, above gauge Vent (98.1 km2) and gauge Vernagt (11.4 km2). As predictors, we use temperature and precipitation projections (EURO-CORDEX) and discharge projections (AMUNDSEN physically based hydroclimatological and snow model) for the two gauges. We address uncertainties associated with the known limitation of QRF that underestimates can be expected if values in the projection period exceed the range represented in the training data (out-of-observation-range days, OOOR). For this, we assess the frequency and extent of these exceedances and the sensitivity of the resulting mean annual suspended sediment concentration (SSC) estimates. We examine the resulting SSY projections for trends, the estimated timing of peak sediment and changes in the seasonal distribution. Our results show that the uncertainties associated with the OOOR data points are small before 2070 (max. 3 % change in estimated mean annual SSC). Results after 2070 have to be treated more cautiously as OOOR data points occur more frequently, and glaciers are projected to have (nearly) vanished by then in some projections, which likely substantially alters sediment dynamics in the area. The resulting projections suggest decreasing sediment export at both gauges in the coming decades, regardless of the emission scenario, which implies that peak sediment has already passed or is underway. This is linked to substantial decreases in discharge volumes, especially during the glacier melt phase in late summer, as a result of increasing temperatures and thus shrinking glaciers. Nevertheless, high(er) annual yields can occur in response to heavy summer precipitation, and both developments would need to be considered in managing sediments, as well as e.g., flood hazard. While we chose the predictors to act as proxies for sediment-relevant processes, future studies are encouraged to try and include geomorphological changes more explicitly, e.g., changes in connectivity, landsliding, rockfalls or vegetation colonization, as these could improve the reliability of the projections.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3