Australian Lidar Measurements of Aerosol Layers Associated with the 2015 Calbuco Eruption

Author:

Klekociuk Andrew R.ORCID,Ottaway David J.ORCID,MacKinnon Andrew D.,Reid Iain M.ORCID,Twigger Liam V.,Alexander Simon P.ORCID

Abstract

The Calbuco volcano in southern Chile (41.3° S, 72.6° W) underwent three separate eruptions on 22–23 April 2015. Following the eruptions, distinct layers of enhanced lidar backscatter at 532 nm were observed in the lower stratosphere above Buckland Park, South Australia (34.6° S, 138.5° E), and Kingston, Tasmania (43.0° S, 147.3° E), during a small set of observations in April–May 2015. Using atmospheric trajectory modelling and measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) space-borne lidar and the Ozone Mapping Profiler Suite (OMPS) instrument on the Suomi National Polar-orbiting Partnership (NPP) satellite, we show that these layers were associated with the Calbuco eruptions. Buckland Park measurements on 30 April and 3 May detected discrete aerosol layers at and slightly above the tropopause, where the relative humidity was well below saturation. Stratospheric aerosol layers likely associated with the eruptions were observed at Kingston on 17 and 22 May in narrow discrete layers accompanied by weaker and more vertically extended backscatter. The measurements on 22 May provided a mean value of the particle linear depolarisation ratio within the main observed volcanic aerosol layer of 18.0 ± 3.0%, which was consistent with contemporaneous CALIOP measurements. The depolarisation measurements indicated that this layer consisted of a filament dominated by ash backscatter residing above a main region having likely more sulfate backscatter. Layer-average optical depths were estimated from the measurements. The mean lidar ratio for the volcanic aerosols on 22 May of 86 ± 37 sr is consistent with but generally higher than the mean for ground-based measurements for other volcanic events. The inferred optical depth for the main volcanic layer on 17 May was consistent with a value obtained from OMPS measurements, but a large difference on 22 May likely reflected the spatial inhomogeneity of the volcanic plume. Short-lived enhancements of backscatter near the tropopause of 17 May likely represented the formation cirrus that was aided by the presence of associated volcanic aerosols. We also provide evidence that gravity waves potentially influenced the layers, particularly in regard to the vertical motion observed in the strong layer on 22 May. Overall, these observations provide additional information on the dispersal and characteristics of the Calbuco aerosol plumes at higher southern latitudes than previously reported for ground-based lidar measurements.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3