Development of a Building-Scale Meteorological Prediction System Including a Realistic Surface Heating

Author:

Kim Dong-Jin,Lee Doo-Il,Kim Jae-Jin,Park Moon-SooORCID,Lee Sang-HyunORCID

Abstract

Microscale urban meteorological models have been widely used in interpreting atmospheric flow and thermal discomfort in urban environments, but most previous studies examined the urban flow and thermal environments for an idealized urban morphology with imposing neutral or homogeneous thermal forcing. This study has developed a new building-scale meteorological prediction system that extends the ability to predict microscale meteorological fields in real urban environments. A computational fluid dynamics (CFD) model has been developed based on the non-hydrostatic incompressible Reynolds-averaged Navier-Stokes (RANS) equations with a standard k-ε turbulence model, and the microscale urban surface energy (MUSE) model was coupled with the CFD model to provide realistic surface thermal boundary conditions in real urban environments. It is driven by the large scale wind and temperature fields predicted by the Korean operational weather prediction model. The validation results of the new building-scale meteorological prediction system were presented against wind tunnel data and field measurements, showing its ability to predict in-canyon flows and thermal environments in association with spatiotemporal variations of surface temperatures in real urban environments. The effects of realistic surface heating on pedestrian level wind and thermal environments have been investigated through sensitivity simulations of different surface heating conditions in the highly built-up urban area. The results implied that the inclusion of surface thermal forcing is important in interpreting urban flow and thermal environment of the urban area, highlighting a realistic urban surface heating that should be considered in predicting building-scale meteorology over real urban environments.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference34 articles.

1. World Urbanization Prospects: The 2014 Revision, Highlights,2014

2. City size and the urban heat island

3. Urban heat island

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3