Data-Driven Analysis of Antimicrobial Resistance in Foodborne Pathogens from Six States within the US

Author:

Zhang Nina,Liu Emily,Tang Alexander,Ye Martin Cheng,Wang Kevin,Jia Qian,Huang Zuyi

Abstract

Foodborne pathogens cause thousands of illnesses across the US each year. However, these pathogens gain resistance to the antimicrobials that are commonly used to treat them. Typically, antimicrobial resistance is caused by mechanisms encoded by multiple antimicrobial-resistance genes. These are carried through pathogens found in foods such as meats. It is, thus, important to study the genes that are most related to antimicrobial resistance, the pathogens, and the meats carrying antimicrobial-resistance genes. This information can be further used to correlate the antimicrobial-resistance genes found in humans for improving human health. Therefore, we perform the first multivariate statistical analysis of the antimicrobial-resistance gene data provided in the NCBI Pathogen Detection Isolates Browser database, covering six states that are geographically either in close proximity to one another (i.e., Pennsylvania (PA), Maryland (MD), and New York (NY)) or far (i.e., New Mexico (NM), Minnesota (MN), and California (CA)). Hundreds of multidimensional data points were projected onto a two-dimensional space that was specified by the first and second principal components, which were then categorized with a hierarchical clustering approach. It turns out that aadA, aph(3’’), aph(3’’)-Ib, aph(6)-I, aph(6)-Id, bla, blaCMY, tet, tet(A), and sul2 constructed the assembly of ten genes that were most commonly involved in antimicrobial resistance in these six states. While geographically close states like PA, MD and NY share more similar antimicrobial-resistance genes, geographically far states like NM, MN, and CA also contain most of these common antimicrobial-resistance genes. One potential reason for this spread of antimicrobial-resistance genes beyond the geographic limitation is that animal meats like chicken and turkey act as the carriers for the nationwide spread of these genes.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3