Simulation of Heavy Metals Migration in Soil-Wheat System of Mining Area

Author:

Fang AmanORCID,Dong Jihong,Zhang Ru

Abstract

Heavy metals in the soil of mining areas have become a primary source of pollution, which could cause deleterious health effects in people exposed through soil-plant systems via multi-pathways. A long-term field experiment under natural conditions was carried out to explore the distribution characteristic and migration law of heavy metals in a soil-wheat system of a mining area in Xuzhou. According to the second level standard of environmental quality standards for soils of China (GB 15618-1995), 30.8 g of CrCl3·6H2O, 8.3 g of Pb(CH3COO)2·3H2O, and 16.5 g of ZnSO4·7H2O were added into the soil of three experimental sites, respectively. The other experimental site with no additional compounds was used as the control site. The Cr, Pb, and Zn concentrations in the soil-wheat system were counted and their corresponding migration models were constructed. From 2014 to 2017, the mean concentrations of Cr (49.09 mg·kg−1), Pb (20.08 mg·kg−1), and Zn (39.11 mg·kg−1) in the soil of the addition sites were higher than that of the control site. The mean concentrations of Cr, Pb, and Zn in wheat of the addition sites were greater than that of the control site with the values of 3.29, 0.06, and 29 mg·kg−1. In comparison, the Cr, Pb, and Zn concentrations in the soil of all experimental sites were lower than the second level standard of environmental quality standards for soils of China (GB 15618-1995), whereas the Cr concentration exceeded its corresponding soil background value of Xuzhou in 2017. The Pb concentration in soil of the addition site was greater than its corresponding background value from 2014 to 2016. The Pb and Zn concentrations in wheat of all experimental sites were lower than the national hygienic standard for grains of China (GB2715-2005) and the national guidelines for cereals of China (NY 861-2004), but the Cr concentration significantly exceeded the national guidelines for cereals of China (NY 861-2004). By constructing the Identical-Discrepant-Contrary (IDC) gray connection models, the result showed that there was a non-linear relationship of Cr, Pb, and Zn concentrations in the soil-wheat system, and the absolute values of most correlation coefficients r were lower than 0.5 and the values of greyness f G ( r ) were more than 0.5. The curvilinear regression models could not reflect the relationship of Cr, Pb, and Zn concentrations in the soil-wheat system with the regression coefficient r 2 values far less than 1. Due to the values of regression coefficient r 2 being close to 1, this study suggested that the allocation estimation models could be used for simulating the Cr, Pb, and Zn migration in the soil-wheat system of a mining area in Xuzhou.

Funder

National Natural Science Foundation of China

Fund Project of Shaanxi Key Laboratory of Land Consolidation

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference51 articles.

1. Integrative evaluation of data derived from biomonitoring and models indicating atmospheric deposition of heavy metals

2. Quantitative analysis of the extent of heavy-metal contamination in soils near Picher, Oklahoma, within the Tar Creek Superfund Site

3. Spatial distribution of smelter emission heavy metals on farmland soil

4. Ability of soil self-purification for petroleum contaminants—A case study in the third factory of Zhongyuan oilfield;Guo;Glob. Geol.,2011

5. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications;Akpor;Int. J. Phys. Sci.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3