Characteristics of Authigenic Minerals around the Sulfate-Methane Transition Zone in the Methane-Rich Sediments of the Northern South China Sea: Inorganic Geochemical Evidence

Author:

Wu Daidai,Sun Tiantian,Xie Rui,Pan Mengdi,Chen XuegangORCID,Ye Ying,Liu Lihua,Wu Nengyou

Abstract

Sediments at marine cold seep areas provide potential archives of past fluid flow, which allow insights into the evolution of past methane seepage activities. However, signals for anaerobic oxidation of methane (AOM) might be obscured in bulk sediments in cold-seep settings due to several factors, especially flood and turbidite deposition. Comprehensive inorganic data were gathered in this study to explore the availability of related records at cold seeps and to provide insights into the evolution of past methane seepage activities. Sediments collected from the site 973-4 in the Taixinan Basin on the northern slope of the South China Sea were characterized in terms of total carbon and sulfur, δ13C values of total organic carbon (δ13CTIC), δ34S values of chromium reducible sulfur (δ34SCRS), and foraminiferal oxygen and carbon isotopes. The results confirmed a strong correlation between formation of authigenic minerals and AOM. Moreover, the 34S enrichments and abundant chromium reducible sulfur (CRS) contents in the authigenic sulfides in the sulfate–methane transition zone (SMTZ) within 619–900 cm below seafloor (cmbsf) reflected past high methane fluxes supported by constant methane seepages. Lithological distribution and AMS (Accelerator Mass Spectra) 14C dating of planktonic foraminifera show that the turbidite (~35.14 ka) was related to a foraminifera-rich interval (Unit II: 440-619 cmbsf) and increased carbonate productivity during the last glacial maximum (LGM). Enrichment of Mo and U was observed accompanied by low contents of nutrient metals (Al, Ti, V, Ni, Fe, Mn, and Cu) in Unit II. The foraminifera-rich interval (Unit II) of cold seep sediments was probably linked to the phenomenon of inconsecutive sedimentary sequence due to the turbidites, which resulted in the lack of Fe, Mn, and Ba enrichment. There is no U enrichment but only Mo enrichment within Unit III, which might be related to H2S produced by AOM during the methane seepages. Based on the above results, it can be speculated that this area has experienced multiple-episodes of methane seep events. Further exploration of AOM should focus on the risks of rapid deposition, especially the impact of turbidity current on sediments.

Funder

the Special project for marine economy development of Guangdong Province

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference79 articles.

1. Gas Hydrates in Marine Sediments;Bohrmann,2006

2. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene

3. Processes and Signals of Nonsteady-State Diagenesis in Deep-Sea Sediments and their Pore Waters;Kasten,2003

4. Late Quaternary Atmospheric CH4 Isotope Record Suggests Permafrost was a Source of CH4 and CO2;Zimov,2009

5. Geomicrobiology of deep, low organic carbon sediments in the Woodlark Basin, Pacific Ocean

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3