Quantitative analysis of the risk of hydrogen sulfide release from gas hydrates

Author:

Wang Xianqing,Liu Siqing,Zhao Bin,Yao Yanfu,Wu Gang,Xie Rui,Fu Yutong,Ning Zijie

Abstract

The role that H2S plays in the global sulfur cycle has been studied extensively in recent years. This paper focuses on the influence of H2S released from gas hydrates on sulfur cycle and establishes a one-dimensional mathematical model to calculate the amount of H2S released from the dissociation of gas hydrates present in multiple layers in the Qiongdongnan Basin China. The results show that the sulfate and methane transition zone that covers an area of about 100 km2in the Qiongdongnan Basin contains 2.3 × 1012 g of pyrite, which requires 4.06 × 1011 mol of H2S for its formation. The H2S released from the dissociation of gas hydrates is 5.4 ×1011 mol, which is about 1.3 times that needed for the formation of pyrite. Therefore, the H2S released from the gas hydrates is an important source of H2S for the formation of pyrite in the sulfate-methane transition zone of Qiongdongnan Basin. According to the flux of H2S and the partial pressure of O2 (PO2) in the atmosphere, the critical value of the balance between the flux of H2S and PO2 turns out to be 0.13 mol kg−1∙bar−1. Furthermore, considering the effect of global sea-level changes, three risk modes are identified to categorize the amount of H2S released from the dissociation of gas hydrate into the atmosphere. We classify the periods from 5–12 Ma BP, 25–29 Ma BP, 47–52 Ma, and 57–61 Ma BP into the high-risk mode. Furthermore, the results show that a part of the H2S released from the gas hydrate dissociation is oxidized by the Fe (III) oxide metal, with much of the metal ions being released into the pore water. Another part of the H2S is re-oxidized by the O2 in the ocean, with much of SO42- released into the seawater. Therefore, the process also provides metal ions and SO42- to pore water or seawater when the H2S released from gas hydrate diffuses from the bottom. This paper provides new insights into the source of H2S in the ocean and shows that the H2S contained in gas hydrates plays an important role in the global sulfur cycle.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3