Author:
Cheng ,Li ,Chen ,Hu ,Yuan ,Liu ,Cui ,Zhang
Abstract
Large amounts of aerosol particles suspended in the atmosphere pose a serious challenge to the climate and human health. In this study, we produced a dataset through merging the Moderate Resolution Imaging Spectrometers (MODIS) Collection 6.1 3-km resolution Dark Target aerosol optical depth (DT AOD) with the 10-km resolution Deep Blue aerosol optical depth (DB AOD) data by linear regression and made use of it to unravel the spatiotemporal characteristics of aerosols over the Pan Yangtze River Delta (PYRD) region from 2014 to 2017. Then, the geographical detector method and multiple linear regression analysis were employed to investigate the contributions of influencing factors. Results indicate that: (1) compared to the original Terra DT and Aqua DT AOD data, the average daily spatial coverage of the merged AOD data increased by 94% and 132%, respectively; (2) the values of four-year average AOD were high in the north-east and low in the south-west of the PYRD; (3) the annual average AOD showed a decreasing trend from 2014 to 2017 while the seasonal average AOD reached its maximum in spring; and that (4) Digital Elevation Model (DEM) and slope contributed most to the spatial distribution of AOD, followed by precipitation and population density. Our study highlights the spatiotemporal variability of aerosol optical depth and the contributions of different factors over this large geographical area in the four-year period, and can, therefore, provide useful insights into the air pollution control for decision makers.
Funder
Fundamental Research Funds for the Central Universities
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献