Effects of Temperature on the Characteristics of Nitrogen Removal and Microbial Community in Post Solid-Phase Denitrification Biofilter Process

Author:

Zhang ,Chen ,Luo ,Wu ,Liu ,Chen ,Tang ,Zhang

Abstract

In order to solve the problems of high energy consumption, complex process and low nitrogen removal efficiency in the currently available low carbon source wastewater treatment processes, a novel coagulation sedimentation/post-solid-phase denitrification biofilter process (CS-BAF-SPDB) was proposed. The effect of temperature on the nitrogen removal performance of BAF-SPDB was intensively studied, and the mechanism of the effect of temperature on nitrogen removal performance was analyzed from the perspective of microbial community structure by using the polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that, to realize favorable nitrifying and denitrifying performance simultaneously in the BAF-SPDB unit, the operation temperature should be set above 18 °C. In addition, the influence of the macro operation parameters on the performance of the BAF and SPDB has a direct relationship with the dynamic changes of the micro microbial community. The influence of temperature on nitrification performance in BAF was mainly embodied in the change of composition, amount and activity of ammonia oxidizing bacteria Candidatus Nitrospira defluvii and nitrite oxidizing bacteria Nitrosomonas sp. Nm47, while that on denitrification performance in SPDB is mainly embodied in the change of composition and amount of solid carbon substrate degrading denitrifying bacteria Pseudomonas sp., Myxobacterium AT3-03 and heterotrophic denitrifying bacteria Dechloromonas agitate, Thauera aminoaromatica, Comamonas granuli and Rubrivivax gelatinosus.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3