Modelling and optimization of energy consumption in the activated sludge biological aeration unit

Author:

Muloiwa Mpho1,Dinka M. O.2,Nyende-Byakika Stephen1

Affiliation:

1. a Department of Civil Engineering, Tshwane University of Technology, Private Bag X680 Pretoria 0001, Staatsartillerie Road, Pretoria West, South Africa

2. b Department of Civil Engineering Science, University of Johannesburg, Auckland Park Campus 2006, Box 524, Johannesburg, South Africa

Abstract

Abstract The biological aeration unit consumes the highest energy (67.3%) in wastewater treatment compared with physical (18.8%) and chemical (13.9%) treatment processes. The high energy consumption is caused by the supply of oxygen using air pumps/blowers and temperature that controls microorganisms' growth. The purpose of this study was to model and optimize energy consumption in the biological aeration unit. The multilayer perceptron (MLP) artificial neural network (ANN) algorithm was used to model energy consumption. The particle swarm optimization (PSO) algorithm was used to optimize the energy consumption model. Sensitivity analysis was performed to determine the percentage contribution of input variables towards energy consumption. The MLP ANN algorithm modelled energy consumption successfully and produced R², RMSE, and MSE of 0.89, 0.0265, and 0.00070, respectively, during the testing phase. The PSO algorithm optimized energy consumption successfully and produced a global solution of 0.993 kWh/m³. The percentage reduction between the lowest measured and optimized energy consumption was 38.4%. Aeration period (81%) and temperature (10.7%) contributed the highest towards energy consumption. In conclusion, temperature played a significant role in energy consumption compared with airflow rate (4.2%). When the temperature is conducive to allowing the growth of microorganisms, the removal of COD and ammonia will be rapid resulting in low energy consumption.

Publisher

IWA Publishing

Subject

Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3