Advancements in machine learning modelling for energy and emissions optimization in wastewater treatment plants: A systematic review

Author:

Abunama Taher1ORCID,Dellieu Antoine1,Nonet Stéphane1

Affiliation:

1. Research and Expertise Center for Water (CEBEDEAU) Liège Belgium

Abstract

AbstractWastewater treatment plants (WWTPs) are high‐energy consumers and major Greenhouse Gas (GHG) emitters. This review offers a comprehensive global overview of the current utilization of machine learning (ML) to optimize energy usage and reduce emissions in WWTPs. It compiles and analyses findings from over a hundred studies primarily conducted within the last decade. These studies are organized into five primary areas: energy consumption (EC), aeration energy (AE), pumping energy (PE), sludge treatment energy (STE) and greenhouse gas (GHG). Additionally, they are further categorized based on learning type, the scale of application, geographic location, year, performance metrics, software, etc. ANNs emerged as the most prevalent, closely trailed by FL and RF. While GA and PSO are the predominant metaheuristic approaches. Despite increasing complexity, researchers are inclined towards employing hybrid models to enhance performance. Reported reductions in energy consumption or GHG emissions spanned various ranges, falling within the 0–10%, 10–20% and >20% brackets.

Funder

Direction Générale Opérationnelle Agriculture, Ressources Naturelles et Environnement du Service Public de Wallonie

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3