Distribution, Sources and Water Quality Evaluation of the Riverine Solutes: A Case Study in the Lancangjiang River Basin, Tibetan Plateau

Author:

Liu JinkeORCID,Han GuilinORCID,Liu ManORCID,Zeng JieORCID,Liang BinORCID,Qu RuiORCID

Abstract

To examine the chemical composition, potential sources of solutes, and water quality of Lancangjiang River, the concentrations of major ions (Ca2+, Mg2+, Na+, K+, HCO3−, SO42−, Cl− and NO3−) in 45 river water samples collected in July and August 2019 were determined. Ca2+ and HCO3− are the predominant ions in river water. The extremely low K+ and NO3− concentrations and the sparse population suggest that the anthropogenic inputs are limited. The Pearson correlation coefficients and the elemental ratios Ca2+/Na+ versus Mg2+/Na+, Ca2+/Na versus HCO3−/Na+, [Ca2+ + Mg2+]/[HCO3−] versus [SO42−]/[HCO3−] reveal the mixing processes of different sources; the chemical composition of the river water is controlled by the mixture of carbonate weathering, evaporite weathering and silicate weathering inputs. To quantify the contributions of atmospheric input and rock dissolution, the forward method is employed in this study, which is based on the mass balance equation. The calculation results suggest the carbonate weathering inputs and gypsum dissolution make up the majority of the riverine cations, while silicate weathering and halite dissolution constitutes a relatively small proportion, the contributions of the atmospheric input are limited. The fast dissolution rate of evaporite and carbonate minerals and their lithologic distributions should be the key factor. To evaluate the water quality for drinking and irrigation purposes, the drinking water quality guidelines and the calculated parameters were employed, including sodium adsorption ratio (SAR), soluble sodium percentage (Na%,) and residual sodium carbonate (RSC). The assessments indicate that the river waters in the middle-lower reaches are generally suitable for irrigation and drinking purpose, and will not lead to health and soil problems, such as soil compaction and salinization. While in the upper reaches, the dissolution of carbonate and gypsum minerals transport abundant ions into river water and the river waters are not appropriate to use directly. This result highlights that the water quality status can also be affected by natural weathering processes in the area without anthropogenic inputs, where the long-time monitoring of water quality is also necessary.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3