Under the Strong Influence of Human Activities: The Patterns and Controlling Factors of River Water Chemistry Changes—A Case Study of the Lower Yellow River

Author:

Ren Chaobin1,Liu Lu2

Affiliation:

1. School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, China

2. Hebei Geological Environment Monitoring Institute, Shijiazhuang 050021, China

Abstract

This study provides an in-depth analysis of the hydrochemical characteristics and their controlling factors in the lower reaches of the Yellow River. Through water quality sampling and analysis over two hydrological periods within a year, combined with hydrochemical methods and machine learning techniques, the study reveals the joint impact of natural factors and human activities on the spatiotemporal variations in hydrochemical constituents. The findings indicate that the water in the lower reaches of the Yellow River exhibits weak alkalinity (the pH is between 7 and 8), with the primary hydrochemical type being HCO3·SO4—Ca·Na·Mg. The temporal variation in the hydrochemical constituents is mainly influenced by rainfall, where nitrate levels are higher during the flood season due to the flushing effect of rainfall, whereas other hydrochemical constituents show an opposite temporal pattern due to the dilution effect of rainfall. The spatial variation in the Yellow River’s hydrochemistry is primarily controlled by a combination of human activities and rainfall. Using Gibbs diagram analysis, it is identified that rock weathering is the main source of ionic constituents, while agricultural fertilization, industrial emissions, and domestic wastewater discharge have significant impacts on the hydrochemical constituents. Compared to other rivers worldwide, the concentration of hydrochemical constituents in the lower reaches of the Yellow River is relatively high, especially nitrate and sulfate, which is closely related to the geological characteristics of the Yellow River basin and intense human activities in the middle and lower reaches. Principal component analysis reveals that the main controlling factors for hydrochemical constituents during the dry season in the lower reaches of the Yellow River are rock weathering dissolution and industrial activities, followed by domestic wastewater; during the flood season, the main controlling factors are rock weathering dissolution and industrial activities, followed by agricultural activities and domestic wastewater. The research findings provide theoretical support for water resource management and water quality protection in the lower reaches of the Yellow River.

Funder

Henan Province Science and Technology Development Plan Project

Nanyang Institute of Technology Doctoral Research Startup Fund Project

China Geological Survey, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3