Reliability of Low-Cost, Sensor-Based Fine Dust Measurement Devices for Monitoring Atmospheric Particulate Matter Concentrations

Author:

Cho Eun-Min,Jeon Hyung Jin,Yoon Dan Ki,Park Si Hyun,Hong Hyung Jin,Choi Kil Yong,Cho Heun Woo,Cheon Hyo Chang,Lee Cheol Min

Abstract

Currently, low-cost, sensor-based fine dust measurement devices are commercially available in South Korea. This study evaluated the reliability of three such devices—Yi Shan A4, Plantower PMS7003, and Plantower PMS7003—in comparison to long-term consecutive monitoring systems for discharge and prevention facilities regarding fine dust control. The performance of these devices for concentration intervals over time was examined through real-time comparison using a GRIMM (Model: 11-A, dust spectrometer from Grimm Technologies) as a reference; this included a correction factor (C-Factor), calculated by a gravimetric method and an equivalence test. For comparison, the reference and target devices were installed in a chamber with fine dust concentrations of 2 µg/m3, with temperature and humidity maintained at 20 °C and 40%, respectively. The fine particulate matter (PM)2.5 concentrations were classified into five intervals: ≤40 µg/m3, 40–80 µg/m3, 80–120 µg/m3, 120–160 µg/m3, and 200–230 µg/m3. Statistical analysis was performed using data obtained from national stations for monitoring and controlling fine dust released from facilities under high fine dust loading conditions. The results showed that the measurements of all target devices, which were corrected according to the reference device, provided accurate values at PM2.5 concentrations of ≥40 µg/m3. The statistical analysis results suggest that the evaluated devices are more reliable than the conventional numerical-analysis-based monitoring system

Funder

Korea Environmental Industry and Technology Institute

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3