Indication Variability of the Particulate Matter Sensors Dependent on Their Location

Author:

Wiora Alicja1ORCID,Wiora Józef1ORCID,Kasprzyk Jerzy1ORCID

Affiliation:

1. Department of Measurements and Control Systems, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland

Abstract

Particulate matter (PM) suspended in the air significantly impacts human health. Those of anthropogenic origin are particularly hazardous. Poland is one of the countries where the air quality during the heating season is the worst in Europe. Air quality in small towns and villages far from state monitoring stations is often much worse than in larger cities where they are located. Their residents inhale the air containing smoke produced mainly by coal-fired stoves. In the frame of this project, an air quality monitoring network was built. It comprises low-cost PMS7003 PM sensors and ESP8266 microcontrollers with integrated Wi-Fi communication modules. This article presents research results on the influence of the PM sensor location on their indications. It has been shown that the indications from sensors several dozen meters away from each other can differ by up to tenfold, depending on weather conditions and the source of smoke. Therefore, measurements performed by a network of sensors, even of worse quality, are much more representative than those conducted in one spot. The results also indicated the method of detecting a sudden increase in air pollutants. In the case of smokiness, the difference between the mean and median indications of the PM sensor increases even up to 400 µg/m3 over a 5 min time window. Information from this comparison suggests a sudden deterioration in air quality and can allow for quick intervention to protect people’s health. This method can be used in protection systems where fast detection of anomalies is necessary.

Funder

Polish Ministry of Science and Higher Education

Publisher

MDPI AG

Reference71 articles.

1. WHO (2021). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide, World Health Organization.

2. Analysis of concentrations trends and origins of PM10 in selected European cities;Kobus;E3S Web Conf.,2017

3. Contributions of natural sources to high PM10 and PM2.5 events in the eastern Mediterranean;Mihalopoulos;Atmos. Environ.,2007

4. Wielgosiński, G., and Czerwińska, J. (2020). Smog Episodes in Poland. Atmosphere, 11.

5. Measurement and Analysis of PM10 and PM2.5 from Chimneys of Coal-fired Power Plants Using a Light Scattering Method;Shin;Aerosol Air Qual. Res.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3