Gas Turbine Anomaly Detection under Time-Varying Operation Conditions Based on Spectra Alignment and Self-Adaptive Normalization

Author:

Miao Dongyan1ORCID,Feng Kun1ORCID,Xiao Yuan1ORCID,Li Zhouzheng1,Gao Jinji1

Affiliation:

1. State Key Laboratory of High-End Compressor and System Technology, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Gas turbine vibration data may exhibit considerable differences under time-varying conditions, which poses challenges for neural network anomaly detection. We first propose a framework for a gas turbine vibration frequency spectra process under time-varying operation conditions, assisting neural networks’ ability to capture weak information. The framework involves scaling spectra for aligning all frequency components related to rotational speed and normalizing frequency amplitude in a self-adaptive way. Degressive beta variational autoencoder is employed for learning spectra characteristics and anomaly detection, while a multi-category anomaly index is proposed to accommodate various operating conditions. Finally, a dataset of blade Foreign Object Damage (FOD) fault occurring under time-varying operating conditions was used to validate the framework and anomaly detection. The results demonstrate that the proposed method can effectively reduce the spectra differences under time-varying conditions, and also detect FOD fault during operation, which are challenging to identify using conventional methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3