Impacts of Grass Coverage and Arrangement Patterns on Runoff and Sediment Yield in Slope-Gully System of the Loess Plateau, China

Author:

Ding Wenfeng,Wang XiekangORCID,Zhang Guanhua,Meng Xi,Ye Zhiwei

Abstract

Both vegetation coverage rates and arrangement patterns have important influences on erosion. Very little previous research focuses on the impacts of spatial vegetation distribution patterns on erosion. The slope-gully system was taken as the research object, which is composed of a 5.0 m long hillslope with a slope gradient of 20° and a 3.0 m long gully slope with a gradient of 50°. A series of scouring experiments with two inflow discharges (3.2 L min−1, 5.2 L min−1) was carried out. The effects of the flow discharges, spatial grass arrangement patterns (US, MS, and DS represent the presence of grass covering on up-hillslope, middle-hillslope, and down-hillslope, respectively) and grass coverage rates (0%, 30%, 50%, 70%, and 90%) on runoff and sediment were studied in this paper. The results indicated that either runoff or sediment yielding was significantly decreased with the grass coverage rates increasing and with the variation of grass arrangement patterns on a hillslope. While grass coverage had more effectiveness in controlling erosion compared with runoff reduction, and DS can control erosion more effectively than US and MS erosion controlling. For the gully slope, erosion significantly increased with the grass coverage rates increasing no matter how the grass arrangement patterns on the hillslope. Therefore, both different grass coverage and different grass arrangement patterns have an influence on erosion processes; any research that only takes care of the single factor mentioned above is not enough to reveal the effects of grass on erosion. In the process of erosion control in the Loess Plateau, taking effective measures both on the hillslope and gully slope will be effective methods of reducing soil erosion.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

basic scientific research business fee of scientific research institutes of Changjiang Academy of Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference40 articles.

1. Tang, K.L. (2004). Soil and Water Conservation in China, Science Press. (In Chinese).

2. Runoff, soil erosion, and erodibility of conservation reserve program land under crop and hay production;Zheng;Soil Sci. Soc. Am. J.,2004

3. (2006). Ecological Restoration and Management, Tsinghua University Press. UNESCO Office Beijing.

4. Soil and water loss from the Loess Plateau in China;Shi;J. Arid. Environ.,2000

5. Vegetation indices derived from remote sensing for an estimation of soil protection against water erosion;Linda;Ecol. Model,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3