Milk–Ta2O5 Hybrid Memristors with Crossbar Array Structure for Bio-Organic Neuromorphic Chip Applications

Author:

Min Jin-GiORCID,Park HaminORCID,Cho Won-JuORCID

Abstract

In this study, a high-performance bio-organic memristor with a crossbar array structure using milk as a resistive switching layer (RSL) is proposed. To ensure compatibility with the complementary metal oxide semiconductor process of milk RSL, a high-k Ta2O5 layer was deposited as a capping layer; this layer enables high-density, integration-capable, photolithography processes. The fabricated crossbar array memristors contain milk–Ta2O5 hybrid membranes, and they exhibit bipolar resistance switching behavior and uniform resistance distribution across hundreds of repeated test cycles. In terms of the artificial synaptic behavior and synaptic weight changes, milk–Ta2O5 hybrid crossbar array memristors have a stable analog RESET process, and the memristors are highly responsive to presynaptic stimulation via paired-pulse facilitation excitatory post-synaptic current. Moreover, spike-timing-dependent plasticity and potentiation and depression behaviors, which closely emulate long-term plasticity and modulate synaptic weights, were evaluated. Finally, an artificial neural network was designed and trained to recognize the pattern of the Modified National Institute of Standards and Technology (MNIST) digits to evaluate the capability of the neuromorphic computing system. Consequently, a high recognition rate of over 88% was achieved. Thus, the milk–Ta2O5 hybrid crossbar array memristor is a promising electronic platform for in-memory computing systems.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3