Lactation Associated Genes Revealed in Holstein Dairy Cows by Weighted Gene Co-Expression Network Analysis (WGCNA)

Author:

Fan Yongliang,Arbab Abdelaziz Adam Idriss,Zhang Huimin,Yang Yi,Nazar Mudasir,Han Ziyin,Yang ZhangpingORCID

Abstract

Weighted gene coexpression network analysis (WGCNA) is a novel approach that can quickly analyze the relationships between genes and traits. In this study, the milk yield, lactose, fat, and protein of Holstein dairy cows were detected in a lactation cycle. Meanwhile, a total of 18 gene expression profiles were detected using mammary glands from six lactation stages (day 7 to calving, −7 d; day 30 post-calving, 30 d; day 90 post-calving, 90 d; day 180 post-calving, 180 d; day 270 post-calving, 270 d; day 315 post-calving, 315 d). On the basis of the 18 profiles, WGCNA identified for the first time 10 significant modules that may be related to lactation stage, milk yield, and the main milk composition content. Genes in the 10 significant modules were examined with gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results revealed that the galactose metabolism pathway was a potential candidate for milk yield and milk lactose synthesis. In −7 d, ion transportation was more frequent and cell proliferation related terms became active. In late lactation, the suppressor of cytokine signaling 3 (SOCS3) might play a role in apoptosis. The sphingolipid signaling pathway was a potential candidate for milk fat synthesis. Dairy cows at 315 d were in a period of cell proliferation. Another notable phenomenon was that nonlactating dairy cows had a more regular circadian rhythm after a cycle of lactation. The results provide an important theoretical basis for the further molecular breeding of dairy cows.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3