Short-Term Load Forecasting Method for Industrial Buildings Based on Signal Decomposition and Composite Prediction Model

Author:

Zhao Wenbo1,Fan Ling2

Affiliation:

1. School of International, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Accurately predicting the cold load of industrial buildings is a crucial step in establishing an energy consumption management system for industrial constructions, which plays a significant role in advancing sustainable development. However, due to diverse influencing factors and the complex nonlinear patterns exhibited by cold load data in industrial buildings, predicting these loads poses significant challenges. This study proposes a hybrid prediction approach combining the Improved Snake Optimization Algorithm (ISOA), Variational Mode Decomposition (VMD), random forest (RF), and BiLSTM-attention. Initially, the ISOA optimizes the parameters of the VMD method, obtaining the best decomposition results for cold load data. Subsequently, RF is employed to predict components with higher frequencies, while BiLSTM-attention is utilized for components with lower frequencies. The final cold load prediction results are obtained by combining these predictions. The proposed method is validated using actual cold load data from an industrial building, and experimental results demonstrate its excellent predictive performance, making it more suitable for cold load prediction in industrial constructions compared to traditional methods. By enhancing the accuracy of cold load predictions. This approach not only improves the energy efficiency of industrial buildings but also promotes the reduction in energy consumption and carbon emissions, thus contributing to the sustainable development of the industrial sector.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3