Short-Term Load Forecasting for Regional Smart Energy Systems Based on Two-Stage Feature Extraction and Hybrid Inverted Transformer

Author:

Huang Zhewei1,Yi Yawen1

Affiliation:

1. School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Accurate short-term load forecasting is critical for enhancing the reliability and stability of regional smart energy systems. However, the inherent challenges posed by the substantial fluctuations and volatility in electricity load patterns necessitate the development of advanced forecasting techniques. In this study, a novel short-term load forecasting approach based on a two-stage feature extraction process and a hybrid inverted Transformer model is proposed. Initially, the Prophet method is employed to extract essential features such as trends, seasonality and holiday patterns from the original load dataset. Subsequently, variational mode decomposition (VMD) optimized by the IVY algorithm is utilized to extract significant periodic features from the residual component obtained by Prophet. The extracted features from both stages are then integrated to construct a comprehensive data matrix. This matrix is then inputted into a hybrid deep learning model that combines an inverted Transformer (iTransformer), temporal convolutional networks (TCNs) and a multilayer perceptron (MLP) for accurate short-term load forecasting. A thorough evaluation of the proposed method is conducted through four sets of comparative experiments using data collected from the Elia grid in Belgium. Experimental results illustrate the superior performance of the proposed approach, demonstrating high forecasting accuracy and robustness, highlighting its potential in ensuring the stable operation of regional smart energy systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3