Comprehensive Review on Cooling of Permanent Magnet Synchronous Motors and Their Qualitative Assessment for Aerospace Applications

Author:

König Paul1,Sharma Dikshant1ORCID,Konda Karunakar Reddy1ORCID,Xie Tianxiao1,Höschler Klaus1

Affiliation:

1. Chair of Aero Engine Design, Brandenburg University of Technology Cottbus-Senftenberg, Siemens-Halske-Ring 14, 03046 Cottbus, Germany

Abstract

The permanent magnet synchronous motor (PMSM) can be a suitable candidate for electrified propulsion in aviation. Despite the very high efficiency, heat dissipation during operation leads to performance limitations. Elevated temperatures in the electrical insulations and the magnets pose a potential safety risk that must be reduced by selective cooling. A comprehensive review is conducted to capture current research interests in cooling methods in PMSM. Cooling methods are described according to their heat transfer mechanism, grouped, and assigned to the components within the motor. Key findings of the literature reviewed are described in the context of PMSM cooling. Information on cooling media and potential combinations of cooling methods in components is gathered. Assessment parameters such as safety, weight, effectiveness, integrability, complexity and cost are defined to enable a subsequent qualitative analysis for six selected cooling methods. A point-weighted evaluation approach, according to VDI 2225, was applied to identify the most promising cooling approach for successful implementation in aviation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference60 articles.

1. European Commission (2022). Fly the Green Deal, Europe’s Vision for Sustainable Aviation, European Commission. Report of the Advisory Council for Aviation Research and Innovation in Europe (ACARE).

2. Novelli, P. (2023, January 12–16). IMOTHEP* European Project: An Investigation of Hybrid Electric Propulsion for Commercial Aircraft. Proceedings of the AIAA AVIATION 2023 Forum, San Diego, CA, USA.

3. Assessment of (Hybrid)-Electric Drive-Train Architectures for Future Aircraft Applications;J. Phys. Conf. Ser.,2023

4. Sahoo, S., Zhao, X., and Kyprianidis, K. (2020). A Review of Concepts, Benefits, and Challenges for Future Electrical Propulsion-Based Aircraft. Aerospace, 7.

5. Germar, M., and Bernd, P. (2014). Grundlagen Elektrischer Maschinen, Wiley-VCH. [10th ed.].

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3