Impact of Temperature Variations on Torque Capacity in Shrink-Fit Junctions of Water-Jacketed Permanent Magnet Synchronous Motors (PMSMs)

Author:

Puma-Benavides David Sebastian1ORCID,Mixquititla-Casbis Luis2ORCID,Llanes-Cedeño Edilberto Antonio3ORCID,Jima-Matailo Juan Carlos4ORCID

Affiliation:

1. School of Engineering and Science, Tecnologico de Monterrey, Puebla Campus, Monterrey 72453, Mexico

2. Independient Researcher, Puebla 74160, Mexico

3. Faculty of Architecture and Engineering, Department of Mechanics, Universidad Internacional SEK, Carcelen Campus, Quito 170120, Ecuador

4. Higher Technology Degree in Automotive Mechanics, Instituto Superior Tecnologico Loja, Loja Campus, Loja 110150, Ecuador

Abstract

This study investigates the impact of temperature variations on the torque capacity of shrink-fit junctions in water-jacketed permanent magnet synchronous motors. Focusing on both baseline and improved designs; torque capacities were evaluated across a temperature range from −40 °C to 120 °C under different material conditions: Least material condition, nominal, and maximum material condition. The baseline design exhibited torque capacities from 7648 Nm to 9032 Nm at −40 °C, decreasing significantly to 549 Nm to 1533 Nm at 120 °C. The improved design showed enhanced performance, with torque capacities ranging from 8055 Nm to 9247 Nm at −40 °C and from 842 Nm to 1618 Nm at 120 °C. The maximum improvement was observed at 120 °C for least material conditions, with a 55.4% increase, and the minimum improvement at −40 °C for maximum material conditions, with a 2.4% increase. Our findings demonstrate a significant increase in torque capacity by up to 20% under varied thermal conditions. These results underscore the effectiveness of design modifications in enhancing thermal stability and torque capacity, making the improved design a more reliable choice for high-performance applications subject to significant thermal fluctuations. This research highlights the critical role of material selection, thermal management, and precise design adjustments in optimizing the performance and reliability of permanent magnet synchronous motors.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3