Experimental Study on SiO2 Nanoparticles-Assisted Alpha-Olefin Sulfonate Sodium (AOS) and Hydrolyzed Polyacrylamide (HPAM) Synergistically Enhanced Oil Recovery

Author:

Hu Jiani1,Fu Meilong1,Zhou Yuxia2,Wu Fei3,Li Minxuan2

Affiliation:

1. Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, College of Petroleum Engineering, Yangtze University, Wuhan 430100, China

2. CNOOC China Limited Hainan Branch, Haikou 570100, China

3. Drilling and Production Technology Research Institute, PetroChina Qinghai Oilfield Company, Jiuquan 736202, China

Abstract

The purpose of this study is to investigate the use of SiO2 nanoparticles in assisting with surfactants and polymers for tertiary oil recovery, with the aim of enhancing oil recovery. The article characterizes the performance of SiO2 nanoparticles, including particle size, dispersion stability, and zeta potential, evaluates the synergistic effects of nanoparticles with alpha-olefin sulfonate sodium (AOS) surfactants and hydrolyzed polyacrylamide (HPAM) on reducing interfacial tension and altering wettability, and conducts core flooding experiments in rock cores with varying permeabilities. The findings demonstrate that the particle size decreased from 191 nm to 125 nm upon the addition of SiO2 nanoparticles to AOS surfactant, but increased to 389 nm upon the addition of SiO2 nanoparticles to HPAM. The dispersibility experiment showed that the SiO2 nanoparticle solution did not precipitate over 10 days. After adding 0.05% SiO2 nanoparticles to AOS surfactant, the zeta potential was −40.2 mV, while adding 0.05% SiO2 nanoparticles to 0.1% HPAM resulted in a decrease in the zeta potential to −25.03. The addition of SiO2 nanoparticles to AOS surfactant further reduced the IFT value to 0.19 mN/m, altering the rock wettability from oil-wet to strongly water-wet, with the contact angle decreasing from 110° to 18°. In low-permeability rock core oil displacement experiments, the use of AOS surfactants and HPAM for enhanced oil recovery increased the recovery rate by 24.5% over water flooding. The recovery rate increased by 21.6% over water flooding in low-permeability rock core experiments after SiO2 nanoparticles were added and surfactants and polymers were utilized for oil displacement. This is because the nanoparticles blocked small pore throats, resulting in increased resistance and hindered free fluid flow. The main causes of this plugging are mutual interference and mechanical entrapment, which cause the pressure differential to rise quickly. In high-permeability rock core oil displacement experiments, the use of AOS surfactants and HPAM for oil recovery increased the recovery rate by 34.6% over water flooding. Additionally, the recovery rate increased by 39.4% over water flooding with the addition of SiO2 nanoparticles and the use of AOS surfactants and HPAM for oil displacement. Because SiO2 nanoparticles create wedge-shaped structures inside highly permeable rock cores, they create structural separation pressure, which drives crude oil forward and aids in diffusion. This results in a comparatively small increase in pressure differential. Simultaneously, the nanoparticles change the rock surfaces’ wettability, which lowers the amount of crude oil that adsorbs and improves oil recovery.

Funder

General Project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3