Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review

Author:

Medina Oscar E.ORCID,Olmos Carol,Lopera Sergio H.,Cortés Farid B.,Franco Camilo A.ORCID

Abstract

The increasing demand for fossil fuels and the depleting of light crude oil in the next years generates the need to exploit heavy and unconventional crude oils. To face this challenge, the oil and gas industry has chosen the implementation of new technologies capable of improving the efficiency in the enhanced recovery oil (EOR) processes. In this context, the incorporation of nanotechnology through the development of nanoparticles and nanofluids to increase the productivity of heavy and extra-heavy crude oils has taken significant importance, mainly through thermal enhanced oil recovery (TEOR) processes. The main objective of this paper is to provide an overview of nanotechnology applied to oil recovery technologies with a focus on thermal methods, elaborating on the upgrading of the heavy and extra-heavy crude oils using nanomaterials from laboratory studies to field trial proposals. In detail, the introduction section contains general information about EOR processes, their weaknesses, and strengths, as well as an overview that promotes the application of nanotechnology. Besides, this review addresses the physicochemical properties of heavy and extra-heavy crude oils in Section 2. The interaction of nanoparticles with heavy fractions such as asphaltenes and resins, as well as the variables that can influence the adsorptive phenomenon are presented in detail in Section 3. This section also includes the effects of nanoparticles on the other relevant mechanisms in TEOR methods, such as viscosity changes, wettability alteration, and interfacial tension reduction. The catalytic effect influenced by the nanoparticles in the different thermal recovery processes is described in Sections 4, 5, 6, and 7. Finally, Sections 8 and 9 involve the description of an implementation plan of nanotechnology for the steam injection process, environmental impacts, and recent trends. Additionally, the review proposes critical stages in order to obtain a successful application of nanoparticles in thermal oil recovery processes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference200 articles.

1. Water and Energy: Threats and Opportunities;Olsson,2015

2. A review of novel techniques for heavy oil and bitumen extraction and upgrading

3. World Energy Outlook 2017,2017

4. The Future of Oil Supply;Miller,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3