Shallow Landslide Susceptibility Models Based on Artificial Neural Networks Considering the Factor Selection Method and Various Non-Linear Activation Functions

Author:

Lee Deuk-HwanORCID,Kim Yun-Tae,Lee Seung-Rae

Abstract

Landslide susceptibility mapping is well recognized as an essential element in supporting decision-making activities for preventing and mitigating landslide hazards as it provides information regarding locations where landslides are most likely to occur. The main purpose of this study is to produce a landslide susceptibility map of Mt. Umyeon in Korea using an artificial neural network (ANN) involving the factor selection method and various non-linear activation functions. A total of 151 historical landslide events and 20 predisposing factors consisting of Geographic Information System (GIS)-based morphological, hydrological, geological, and land cover datasets were constructed with a resolution of 5 x 5 m. The collected datasets were applied to information gain ratio analysis to confirm the predictive power and multicollinearity diagnosis to ensure the correlation of independence among the landslide predisposing factors. The best 11 predisposing factors that were selected in this study were randomly divided into a 70:30 ratio for training and validation datasets, which were used to produce ANN-based landslide susceptibility models. The ANN model used in this study had a multi-layer perceptron (MLP) structure consisting of an input layer, one hidden layer, and an output layer. In the output layer, the logistic sigmoid function was used to represent the result value within the range of 0 to 1, and six non-linear activation functions were used for the hidden layer. The performance of the landslide susceptibility models was evaluated using the receiver operating characteristic curve, Kappa index, and five statistical indices (sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV)) with the training dataset. In addition, the landslide susceptibility models were validated using the aforementioned measures with the validation dataset and were compared using the Friedman test to check the significant differences among the six developed models. The optimal number of neurons was determined based on the aforementioned performance evaluation and validation results. Overall, the model with the best performance was the MLP model with the logistic sigmoid activation function in the output layer and the hyperbolic tangent sigmoid activation function with five neurons in the hidden layer. The validation results of the best model showed a sensitivity of 82.61%, specificity of 78.26%, accuracy of 80.43%, PPV of 79.17%, NPV of 81.82%, a Kappa index of 0.609, and AUC of 0.879. The results of this study highlight the effectiveness of selecting an optimal MLP model structure for shallow landslide susceptibility mapping using an appropriate predisposing factor section method.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3