Abstract
This paper presents a solution for building awareness of the electromagnetic situation in cognitive mobile ad hoc networks (MANET) using the cooperative spectrum sensing method. Signal detection is performed using energy detectors with noise level estimation. Based on the evidence theory, the fusion center decides on the particular channel occupancy, which can process incomplete and unambiguous input data. Next, a reinforced machine learning algorithm estimates the usefulness of particular channels for the MANET transmission and creates backup channels list that could be used in case of interferences. Initial simulations were performed using the MATLAB environment, and next an OMNET-based MAENA high fidelity simulator was used. Performed simulations showed a significant increase in sensing efficiency compared to sensing performed using simple data fusion rules.
Funder
EDA
Military University of Technology
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献