A Distributed Black-Box Adversarial Attack Based on Multi-Group Particle Swarm Optimization

Author:

Suryanto NaufalORCID,Kang HyoeunORCID,Kim YongsuORCID,Yun YoungyeoORCID,Larasati Harashta TatimmaORCID,Kim HowonORCID

Abstract

Adversarial attack techniques in deep learning have been studied extensively due to its stealthiness to human eyes and potentially dangerous consequences when applied to real-life applications. However, current attack methods in black-box settings mainly employ a large number of queries for crafting their adversarial examples, hence making them very likely to be detected and responded by the target system (e.g., artificial intelligence (AI) service provider) due to its high traffic volume. A recent proposal able to address the large query problem utilizes a gradient-free approach based on Particle Swarm Optimization (PSO) algorithm. Unfortunately, this original approach tends to have a low attack success rate, possibly due to the model’s difficulty of escaping local optima. This obstacle can be overcome by employing a multi-group approach for PSO algorithm, by which the PSO particles can be redistributed, preventing them from being trapped in local optima. In this paper, we present a black-box adversarial attack which can significantly increase the success rate of PSO-based attack while maintaining a low number of query by launching the attack in a distributed manner. Attacks are executed from multiple nodes, disseminating queries among the nodes, hence reducing the possibility of being recognized by the target system while also increasing scalability. Furthermore, we utilize Multi-Group PSO with Random Redistribution (MGRR-PSO) for perturbation generation, performing better than the original approach against local optima, thus achieving a higher success rate. Additionally, we propose to efficiently remove excessive perturbation (i.e, perturbation pruning) by utilizing again the MGRR-PSO rather than a standard iterative method as used in the original approach. We perform five different experiments: comparing our attack’s performance with existing algorithms, testing in high-dimensional space in ImageNet dataset, examining our hyperparameters (i.e., particle size, number of clients, search boundary), and testing on real digital attack to Google Cloud Vision. Our attack proves to obtain a 100% success rate on MNIST and CIFAR-10 datasets and able to successfully fool Google Cloud Vision as a proof of the real digital attack by maintaining a lower query and wide applicability.

Funder

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. Multimedia Big Data Analytics

2. Adversarial Examples: Attacks and Defenses for Deep Learning

3. A Survey of Black-Box Adversarial Attacks on Computer Vision Models;Bhambri;arXiv,2019

4. They Might NOT Be Giants: Crafting Black-Box Adversarial Examples with Fewer Queries Using Particle Swarm Optimization;Mosli;arXiv,2019

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3