EFSAttack: Edge Noise-Constrained Black-Box Attack Using Artificial Fish Swarm Algorithm

Author:

Gao Jiaqi1ORCID,Zheng Kangfeng1,Wang Xiujuan2ORCID,Wu Chunhua1ORCID,Wu Bin1

Affiliation:

1. School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract

Black-box attacks generate adversarial examples by querying the target model and updating the noise according to the feedback. However, the current black-box attack methods require excessive queries to generate adversarial examples, increasing the risk of detection by target defense systems. Furthermore, the current black-box attack methods primarily focus on controlling the magnitude of perturbations while neglecting the impact of perturbation placement on the stealthiness of adversarial examples. To this end, we propose a novel edge noise-constrained black-box attack method using the artificial fish swarm algorithm (EFSAttack). EFSAttack introduces the concept of edge noise constraint to indicate the low-frequency region of the image where perturbations are added and employs edge noise constraint to improve the population initialization and population evolution process. The experiments on CIFAR-10 and MNIST show notable improvements in the success rates, query efficiency, and adversarial example invisibility.

Publisher

MDPI AG

Reference30 articles.

1. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification;Yang;Sci. Data,2023

2. A survey on evaluation of large language models;Chang;ACM Trans. Intell. Syst. Technol.,2024

3. Radford, A., Kim, J.W., Xu, T., Brockman, G., McLeavey, C., and Sutskever, I. (2023, January 23–29). Robust speech recognition via large-scale weak supervision. Proceedings of the 40th International Conference on Machine Learning, Honolulu, HI, USA.

4. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., and Fergus, R. (2013). Intriguing properties of neural networks. arXiv.

5. Goodfellow, I.J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3