Intelligent Diagnosis towards Hydraulic Axial Piston Pump Using a Novel Integrated CNN Model

Author:

Tang Shengnan,Zhu YongORCID,Yuan Shouqi,Li Guangpeng

Abstract

As a critical part of a hydraulic transmission system, a hydraulic axial piston pump plays an indispensable role in many significant industrial fields. Owing to the practical undesirable working environment and hidden faults, it is challenging to precisely and effectively detect and diagnose the varying fault in the engineering. Deep learning-based technology presents special strengths in processing mechanical big data. It can simultaneously complete the feature extraction and classification, and achieve the automatic information learning. The popular convolutional neural network (CNN) is exploited for its potent ability of image processing. In this paper, a novel combined intelligent method is developed for fault diagnosis towards a hydraulic axial piston pump. First, the conversion of signals to images is conducted via continuous wavelet transform; the effective feature is preliminarily extracted from the transformed time-frequency images. Second, a novel deep CNN model is constructed to achieve the fault classification. To disclose the potential learning in the disparate layers of the CNN model, the visualization of reduced features is performed by employing t-distributed stochastic neighbor embedding. The effectiveness and stability of the proposed model are validated through the experiments. With the proposed method, different fault types can be precisely identified and high classification accuracy is achieved in a hydraulic axial piston pump.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3