Intelligent Fault Diagnosis Methods for Hydraulic Piston Pumps: A Review

Author:

Zhu Yong12ORCID,Wu Qingyi13,Tang Shengnan14,Khoo Boo Cheong5,Chang Zhengxi6

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

2. International Shipping Research Institute, GongQing Institute of Science and Technology, Jiujiang 332020, China

3. Wenling Fluid Machinery Technology Institute, Jiangsu University, Wenling 317525, China

4. Saurer (Changzhou) Textile Machinery Co., Ltd., Changzhou 213200, China

5. Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore

6. Leo Group Co., Ltd., Wenling 317500, China

Abstract

As the modern industry rapidly advances toward digitalization, networking, and intelligence, intelligent fault diagnosis technology has become a necessary measure to ensure the safe and stable operation of mechanical equipment and effectively avoid major disaster accidents and huge economic losses caused by mechanical equipment failure. As the “power heart” of hydraulic transmission systems, hydraulic piston pumps (HPPs) occupy an important position in aerospace, navigation, national defense, industry, and many other high-tech fields due to their high-rated pressure, compact structure, high efficiency, convenient flow regulation, and other advantages. Faults in HPPs can create serious hazards. In this paper, the research on fault recognition technology for HPPs is reviewed. Firstly, the existing fault diagnosis methods are described, and the typical fault types and mechanisms of HPPs are introduced. Then, the current research achievements regarding fault diagnosis in HPPs are summarized based on three aspects: the traditional intelligent fault diagnosis method, the modern intelligent fault diagnosis method, and the combined intelligent fault diagnosis method. Finally, the future development trend of fault identification methods for HPPs is discussed and summarized. This work provides a reference for developing intelligent, efficient, and accurate fault recognition methods for HPPs. Moreover, this review will help to increase the safety, stability, and reliability of HPPs and promote the implementation of hydraulic transmission technology in the era of intelligent operation and maintenance.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

China Postdoctoral Science Foundation

China Scholarship Council Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3