A Fault Diagnosis Method of Bogie Axle Box Bearing Based on Spectrum Whitening Demodulation

Author:

Zheng ZejunORCID,Song Dongli,Xu Xiao,Lei Lei

Abstract

The axle box bearing of bogie is one of the key components of the rail transit train, which can ensure the rotary motion of wheelsets and make the wheelsets adapt to the conditions of uneven railways. At the same time, the axle box bearing also exposes most of the load of the car body. Long-time high-speed rotation and heavy load make the axle box bearing prone to failure. If the bearing failure occurs, it will greatly affect the safety of the train. Therefore, it is extremely important to monitor the health status of the axle box bearing. At present, the health status of the axle box bearing is mainly monitored by vibration information and temperature information. Compared with the temperature data, the vibration data can more easily detect the early fault of the bearing, and early warning of the bearing state can avoid the occurrence of serious fault in time. Therefore, this paper is based on the vibration data of the axle box bearing to carry out adaptive fault diagnosis of bearing. First, the AR model predictive filter is used to denoise the vibration signal of the bearing, and then the signal is whitened in the frequency domain. Finally, the characteristic value of vibration data is extracted by energy operator demodulation, and the fault type is determined by comparing with the theoretical value. Through the analysis of the constructed simulation signal data, the characteristic parameters of the data can be effectively extracted. The experimental data collected from the bearing testbed of high-speed train are analyzed and verified, which further proves the effectiveness of the feature extraction method proposed in this paper. Compared with other axle box bearing fault diagnosis methods, the innovation of the proposed method is that the signal is denoised twice by using AR filter and spectrum whitening, and the adaptive extraction of fault features is realized by using energy operator. At the same time, the steps of setting parameters in the process of feature extraction are avoided in other feature extraction methods, which improves the diagnostic efficiency and is conducive to use in online monitoring system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3