Author:
Zhang Liyun,Dong Honghui,Jia Limin,Wang Biao
Publisher
Springer Nature Singapore
Reference15 articles.
1. Zhang, S., Zhang, S.B., Wang, B.N., et al.: Deep learning algorithms for bearing fault diagnostics: a comprehensive review. IEEE Access 8, 29857–29881 (2020)
2. Shenfield, A., Howarth, M.: A novel deep learning model for the detection and identification of rolling element bearing faults. Sensors 20(18), 450–460 (2020)
3. Lei, Y., Jia, F., Kong, D., Lin, J., Xing, S.: Opportunities and challenges of mechanical intelligent fault diagnosis under big data. J. Mech. Eng. 54(5), 95–98 (2018). (in Chinese)
4. Zhang, Y., Qin, N., Wu, P., Du, J., Wu, B.: Application of SDE network in unknown fault diagnosis of bogie of high-speed train. Control. Eng. 29(2), 300–306 (2022). (in Chinese)
5. Li, Y., Jin, W.: All-vector IMF information entropy for bogie fault diagnosis of high-speed train. Vibration. Testing Diagnostics 41(5), 874–879 (2021). (in Chinese)