A Queueing-Based Model Performance Evaluation for Internet of People Supported by Fog Computing

Author:

Rodrigues Laécio,Rodrigues Joel J. P. C.ORCID,Serra Antonio de Barros,Silva Francisco Airton

Abstract

Following the Internet of Things (IoT) and the Internet of Space (IoS), we are now approaching IoP (Internet of People), or the Internet of Individuals, with the integration of chips inside people that link to other chips and the Internet. Low latency is required in order to achieve great service quality in these ambient assisted living facilities. Failures, on the other hand, are not tolerated, and assessing the performance of such systems in a real-world setting is difficult. Analytical models may be used to examine these types of systems even in the early phases of design. The performance of aged care monitoring systems is evaluated using an M/M/c/K queuing network. The model enables resource capacity, communication, and service delays to be calibrated. The proposed model was shown to be capable of predicting the system’s MRT (mean response time) and calculating the quantity of resources required to satisfy certain user requirements. To analyze data from IoT solutions, the examined architecture incorporates cloud and fog resources. Different circumstances were analyzed as case studies, with four main characteristics taken into consideration. These case studies look into how cloud and fog resources differ. Simulations were also run to test various routing algorithms with the goal of improving performance metrics. As a result, our study can assist in the development of more sophisticated health monitoring systems without incurring additional costs.

Funder

Fundação para a Ciência e Tecnologia

National Council for Scientific and Technological Development

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3