PQ-Mist: Priority Queueing-Assisted Mist–Cloud–Fog System for Geospatial Web Services

Author:

Panigrahi Sunil K.1,Goswami Veena2,Apat Hemant K.2,Mund Ganga B.1,Das Himansu1ORCID,Barik Rabindra K.2ORCID

Affiliation:

1. School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India

2. School of Computer Applications, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India

Abstract

The IoT and cloud environment renders enormous quantities of geospatial information. Fog and mist computing is the scaling technology that handles geospatial data and sends it to the cloud storage system through fog/mist nodes. Installing a mist–cloud–fog system reduces latency and throughput. This mist–cloud–fog system has processed different types of geospatial web services, i.e., web coverage service (WCS), web processing services (WPS), web feature services (WFS), and web map services (WMS). There is an urgent requirement to increase the number of computer devices tailored to deliver high-priority jobs for processing these geospatial web services. This paper proposes a priority-queueing assisted mist–cloud–fog system for efficient resource allocation for high- and low-priority tasks. In this study, WFS is treated as high-priority service, whereas WMS is treated as low-priority service. This system dynamically allocates mist nodes and is determined by the load on the system. In addition to that, the assignment of tasks is determined by priority. Not only does this classify high-priority tasks and low-priority tasks, which helps reduce the amount of delay experienced by high-priority jobs, but it also dynamically allocates mist devices within the network depending on the computation load, which helps reduce the amount of power that is consumed by the network. The findings indicate that the proposed system can achieve a significantly lower delay for higher-priority jobs for more significant rates of task arrival when compared with other related schemes. In addition to this, it offers a technique that is both mathematical and analytical for investigating and assessing the performance of the proposed system. The QoS requirements for each device demand are factored into calculating the number of mist nodes deployed to satisfy those requirements.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3