Groundwater Recharge Prediction Using Linear Regression, Multi-Layer Perception Network, and Deep Learning

Author:

Huang XinORCID,Gao Lei,Crosbie Russell S.,Zhang Nan,Fu Guobin,Doble Rebecca

Abstract

As the largest freshwater storage in the world, groundwater plays an important role in maintaining ecosystems and helping humans adapt to climate change. However, groundwater dynamics, such as groundwater recharge, cannot be measured directly and is influenced by spatially and temporally complex processes, models are therefore required to capture the dynamics and provide scientific advice for decision-making. This paper developed, estimated and compared the performance of linear regression, multi-layer perception (MLP) and Long Short-Term Memory (LSTM) models in predicting groundwater recharge. The experimental dataset consists of time series of annual recharge from the year 1970 to 2012, based on water table fluctuation estimates from 465 bores in the states of South Australia and Victoria, Australia. We identified the factors that influenced groundwater recharge and found that the correlation between rainfall and groundwater recharge was strongest. The linear regression model had the poorest fitting performance, with the root mean squared error (RMSE) being greater than 0.19 when various proportions of training data were considered. The MLP model outperformed the linear regression in the prediction capability, achieving RMSE = 0.11 when 80% of training data was considered. The LSTM model was found to have the best performance, whose root mean squared errors were less than 0.12 when various proportions of training data were applied. The relative importance of influential predictors was evaluated using the above three models.

Funder

National Science Foundation of China

Natural Science Foundation of Tianjin

Doctoral Foundation of Tianjin Normal University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3