High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation

Author:

Pazola Anna,Shamsudduha MohammadORCID,French Jon,MacDonald Alan M.ORCID,Abiye Tamiru,Goni Ibrahim Baba,Taylor Richard G.ORCID

Abstract

Abstract. Groundwater recharge is a key hydrogeological variable that informs the renewability of groundwater resources. Long-term average (LTA) groundwater recharge provides a measure of replenishment under the prevailing climatic and land-use conditions and is therefore of considerable interest in assessing the sustainability of groundwater withdrawals globally. This study builds on the modelling results by MacDonald et al. (2021), who produced the first LTA groundwater recharge map across Africa using a linear mixed model (LMM) rooted in 134 ground-based studies. Here, continent-wide predictions of groundwater recharge were generated using random forest (RF) regression employing five variables (precipitation, potential evapotranspiration, soil moisture, normalised difference vegetation index (NDVI) and aridity index) at a higher spatial resolution (0.1° resolution) to explore whether an improved model might be achieved through machine learning. Through the development of a series of RF models, we confirm that a RF model is able to generate maps of higher spatial variability than a LMM; the performance of final RF models in terms of the goodness of fit (R2=0.83; 0.88 with residual kriging) is comparable to the LMM (R2=0.86). The higher spatial scale of the predictor data (0.1°) in RF models better preserves small-scale variability from predictor data than the values provided via interpolated LMMs; these may prove useful in testing global- to local-scale models. The RF model remains, nevertheless, constrained by its representation of focused recharge and by the limited range of recharge studies in humid, equatorial Africa, especially in the areas of high precipitation. This confers substantial uncertainty in model estimates.

Funder

Natural Environment Research Council

Canadian Institute for Advanced Research

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3