Binary Neural Networks in FPGAs: Architectures, Tool Flows and Hardware Comparisons

Author:

Su Yuanxin12,Seng Kah Phooi134,Ang Li Minn3,Smith Jeremy2

Affiliation:

1. School of AI and Advanced Computing, Xi’an Jiaotong Liverpool University, Suzhou 215000, China

2. Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3GJ, UK

3. School of Computer Science, Queensland University of Technology, Brisbane City, QLD 4000, Australia

4. School of Science Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia

Abstract

Binary neural networks (BNNs) are variations of artificial/deep neural network (ANN/DNN) architectures that constrain the real values of weights to the binary set of numbers {−1,1}. By using binary values, BNNs can convert matrix multiplications into bitwise operations, which accelerates both training and inference and reduces hardware complexity and model sizes for implementation. Compared to traditional deep learning architectures, BNNs are a good choice for implementation in resource-constrained devices like FPGAs and ASICs. However, BNNs have the disadvantage of reduced performance and accuracy because of the tradeoff due to binarization. Over the years, this has attracted the attention of the research community to overcome the performance gap of BNNs, and several architectures have been proposed. In this paper, we provide a comprehensive review of BNNs for implementation in FPGA hardware. The survey covers different aspects, such as BNN architectures and variants, design and tool flows for FPGAs, and various applications for BNNs. The final part of the paper gives some benchmark works and design tools for implementing BNNs in FPGAs based on established datasets used by the research community.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3