Quantitative and Qualitative Analysis of Agricultural Fields Based on Aerial Multispectral Images Using Neural Networks

Author:

Strzępek Krzysztof1,Salach Mateusz2ORCID,Trybus Bartosz3ORCID,Siwiec Karol1,Pawłowicz Bartosz4ORCID,Paszkiewicz Andrzej2ORCID

Affiliation:

1. The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland

2. Department of Complex Systems, Rzeszow University of Technology, 35-959 Rzeszow, Poland

3. Department of Computer and Control Engineering, Rzeszow University of Technology, 35-959 Rzeszow, Poland

4. Department of Electronic and Telecommunications Systems, Rzeszow University of Technology, 35-959 Rzeszow, Poland

Abstract

This article presents an integrated system that uses the capabilities of unmanned aerial vehicles (UAVs) to perform a comprehensive crop analysis, combining qualitative and quantitative evaluations for efficient agricultural management. A convolutional neural network-based model, Detectron2, serves as the foundation for detecting and segmenting objects of interest in acquired aerial images. This model was trained on a dataset prepared using the COCO format, which features a variety of annotated objects. The system architecture comprises a frontend and a backend component. The frontend facilitates user interaction and annotation of objects on multispectral images. The backend involves image loading, project management, polygon handling, and multispectral image processing. For qualitative analysis, users can delineate regions of interest using polygons, which are then subjected to analysis using the Normalized Difference Vegetation Index (NDVI) or Optimized Soil Adjusted Vegetation Index (OSAVI). For quantitative analysis, the system deploys a pre-trained model capable of object detection, allowing for the counting and localization of specific objects, with a focus on young lettuce crops. The prediction quality of the model has been calculated using the AP (Average Precision) metric. The trained neural network exhibited robust performance in detecting objects, even within small images.

Funder

Ministry of Education and Science of the Republic of Poland

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3